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Executive Summary

Harmonization of data integration is the key to standardization efforts in personalised medicine, which
would also facilitate cross-European studies. Standardization of the models themselves is less essential
within a research context, where new models are created and tested in line with research progress,
harmonization and/or standardization of input data is both feasible and necessary.

We argue that model validation should receive more attention, and other measures should be
implemented such that validation of models within personalised medicine becomes easier, also across
borders. While this is an evident necessity within the context of models implemented as medical devices
or decision tools, which are regulated by the European Medicines Agency and national competent
authorities, we argue that model validation should be a higher priority at research level also, facilitating
assessment by peers and by medical doctors — who themselves should receive better training in
assessment of research using in silico models. This will also ease the implementation of translational
research results in the clinic.

Acceptance by doctors and the relevant medical specialties is a key hurdle for in silico models in
personalised medicine. Any medical product - device, algorithm or drug - has to prove itself safe and
effective to be licensed for use by regulators; however, it has also to be accepted by medical experts as
being a good choice, and be recommended within clinical specialties.

EU-STANDS4PM joined forces to examine to what extent existing standards or standards under
development for both format and semantics can be used to link clinical and health as well as research
data to computational models relevant for personalised medicine. As all requirements should be equally
understood and fulfilled by users it is important to define them uniformly in an international context. To
achieve this the conclusion of our work shall be also discussed in international standardization and
technical committees, especially in the case of standards that are still being drawn up, and new
standardization projects shall be initiated where necessary.

We present a White Paper featuring recommendations for standardization of data integration as well as
recommendations for standardization of model validation within a collaborative research context, such
that health-related data can be optimally used for translational research and personalised medicine
across Europe.

As such the White paper showcases the approach that takes big data in health through harmonized data
integration to the most relevant predictive computational models for personalised medicine. As they
are refined and validated these models can provide guidance not just how to use data, but also how to
best cope with disease and preserve wellbeing in the daily lives of patients.
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Introduction

Aims of EU-STANDS4PM

EU-STANDS4PM is a Horizon 2020 funded Coordinating and Support Action tasked to develop
harmonized transnational standards, recommendations and guidelines that allow a broad application of
predictive in silico methodologies in personalised medicine across Europe. EU-STANDS4PM will assess
and evaluate national standardization strategies for health data integration, as well as data-driven in
silico modelling approaches for personalised medicine, with the aim to bundle European standardization
efforts. A major goal is to develop harmonized standards as well as recommendations and guidelines for
predictive data-driven in silico (here: mathematical and computational modelling, (Wolkenhauer et al.
2014))! methodologies applied in personalised medicine.

The challenge of making sense of big data

Although Big Data already drives fundamental medical/scientific applications and the associated
socioeconomic potential forward, a large-scale future exploitation of Big Data in research and health
care represents a major challenge (Apweiler et al. 2018)%. This concerns both technical and safety issues,
as well as legal, ethical, social and cultural aspects (O Cathaoir K. 2020) in dealing with personal health-
relevant and large-volume data sets that differ to a great extent in Europe. In addition to country-specific
heterogeneities in regard to e.g., technical or cultural, legal and ethical issues, Europe currently lacks
well-functioning, standardized and interoperable Information and Communication Technology (ICT)
infrastructure, capable of linking the databases of basic and clinical research with different registries
(including those from environmental, food and social sciences and humanities), whilst addressing both
legal and ethical frameworks to maintain public trust (Horizon-2020-Advisory-Group 2018-2020) in a
proper legal, ethical and privacy-protective data environment. Publicly accepted strategies and
governance frameworks for integrated Big Data to further develop healthcare —quality and —system
performance are key factors that have to be implemented before Big Data can unfold its full medical
and research potential through in silico analysis and interpretation. Regarding Big Data in health the
specific challenges are thus to:

> Develop data-driven computational approaches that are tailored (personalised) to the individual or stratified
patient groups addressing clinically relevant questions.

> Harness, utilize and understand (exploit) high volume, high diversity biological, clinical, environmental, and
lifestyle information.

> Develop European harmonized standardization guidelines for data integration strategies.

> Ensure that integration of personal and patient-derived data is performed lawfully, ethically and fairly,
including in full respect of patients’ rights.

> Standards on a European level for secure interoperable data integration and predictive computational
models are therefore essential to utilize the wealth of information that Big Data contain — specifically and
efficiently to push a pro-active personalised medicine forward.

To achieve these goals both (i) the “technical” element of standardizing data input and modelling, and
(ii) the legal and ethical framework supporting data integration and interoperability must be addressed.
The legal and ethical framework is analysed in the EU-STANDS4PM paper “Legal and ethical review of in

1 n the context of EU-STANDS4PM the term in silico refers to mathematical and computational models of biological systems,
such as molecular modelling, modelling of subcellular processes, individual-cell or cell-based models, tissue/organ level
models, body systems level models (Wolkenhauer et al. 2014).

2 We refer to the following definition “Big data in health encompasses high volume, high diversity biological, clinical,
environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and
wellness status, at one or several time points” (Auffray et al. 2016)
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silico modelling” (O Cathaoir K. 2020). The broader context of this White Paper is thus to promote and
initiate the development of technical standards as well as to provide recommendations for data-driven
modelling approaches for personalised medicine.

In a preceding EU-STANDS4PM paper “Towards standardization guidelines for in silico approaches in
personalized medicine” (Brunak et al. 2020) we initiated this development and addressed crucial
requirements associated with the implementation of computational models in personalized medicine,
including a first set of general recommendations to key actors (please see info box 5, annex). The current
White Paper follows this direction and provides a comprehensive analysis of computational models that
are of relevance for personalized medicine. Each modelling approach contains a collection of specific
challenges and corresponding recommendations for data input and model validation.

Motivation for standardization in personalised medicine

Common standards support communities (see also info box 2) with a basis for mutual understanding
and information exchange and common standards are indispensable for collaborative work. Data from
different sources and recorded at different times must be integrated in order to setup computer models
in personalised medicine. Consistent documentation of data, models and simulation results based on
standards ensure that the data and corresponding metadata (data describing the data and its context),
as well as models, methods and visualizations are structured and described in a “FAIR” manner: Findable,
Accessible, Interoperable and Reusable (Info box 1) (Wilkinson et al. 2016).

Info box 1: FAIR guiding principles: Findable, Accessible, Interoperable and Reusable
According to Joint Declaration of Data Citation Principles (JDDCP; https://www.force11.org/fairprinciples):

To be Findable any Data Object should be uniquely and persistently identifiable
- The same Data Object should be re-findable at any point in time, thus Data Objects should be persistent, with
emphasis on their metadata
- A Data Object should minimally contain basic machine actionable metadata that allows it to be distinguished
from other Data Objects
- Identifiers for any concept used in Data Objects should therefore be Unique and Persistent
Data is Accessible in that it can be always obtained by machines and humans
— Upon appropriate authorization
— Through a well-defined protocol
— Thus, machines and humans alike will be able to judge the actual accessibility of each Data Object.
Data Objects can be Interoperable only if:
- (Meta) data is machine-actionable
- (Meta) data formats utilize shared vocabularies and/or ontologies
- (Meta) data within the Data Object should thus be both syntactically parseable and semantically machine-
accessible
For Data Objects to be Reusable additional criteria are:
- Data Objects should be compliant with principles 1-3
- (Meta) data should be sufficiently well-described and rich that it can be automatically (or with minimal human
effort) linked or integrated, like-with-like, with other data sources
— Published Data Objects should refer to their sources with rich enough metadata and provenance to enable
proper citation
A central aim of EU-STANDS4PM is to develop ISO Technical Report(s) together with the existing ISO bodies as

guidelines and recommendations for the data and models to be used - as best practice. These activities will take the
FAIR principles into account.

Hence, data and model standards support the reliable exchange of health-related data, making the data
FAIR for their integration into computer models used in personalised medicine. Such data and model
standards, together with harmonized ways to describe their metadata, also ensure the interoperability
of tools used for data integration and modelling, as well as the reproducibility of the simulation results
of the models. In that sense modelling standards are agreed ways of consistently structuring, describing

8
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and associating models and data, their respective parts, their graphical visualization, as well as
information about applied methods and the outcome of model simulations. Such standards also assist
with describing how constituent parts interact together, or are linked, and how they are embedded in
their physiological context.

Major challenges in the field of personalised medicine are to harmonize the standardization efforts that
refer to different data types, approaches and technologies, as well as to make the standards
interoperable so that the data can be compared and integrated into models. Reproducible modelling in
personalised medicine requires a basic understanding of the modelled system, as well as of its biological
and physiological background. There is a relevant checklist that provides guidelines on the minimum
amount of metadata information required in order to understand a model (minimum information
requested in the annotation of biochemical models (MIRIAM), (Le Novere et al. 2005)). This information
about data and models can be transferred by using metadata in the form of semantic annotations. These
annotations can improve the shareability, and interoperability of the data or model (Neal et al. 2019).
To render data and models FAIR, it is important that all their elements (entities) in their context are
understood in exactly the same way, independently from the individual or tool that process or analyses
them. For this purpose, it is necessary to consistently use the defined terminologies, such as controlled
vocabularies and domain ontologies that can be defined and applied independently of the data/model
format.

For many different data types used in personalised medicine domain-specific annotation standards and
terminologies are available. For example, UniProt® or the Protein Ontology®, can be used to uniquely
identify proteins in a particular biological context which can then be linked to specific entities in the
computational model. Similarly, the Gene Ontology’ could be used to identify specific genes or cellular
components whereas the Foundational Model of Anatomy (FMA) (Rosse and Mejino 2003) can be used
to localize an entity in the computational model to specific spatial location or anatomical structure. If
not found completely or partially unstructured, which is often the case, health-related data is most
commonly structured and codified by specific formatting standards for medical data. These can be the
interoperability standard HL7 Fast Healthcare Interoperability Resources (FHIR) (Bender and Sartipi
2013), or the standard for electronic health records (openEHR (Kalra, Beale, and Heard 2005)).
Semantical content is usually annotated with domain-specific clinical terminologies, e.g., International
Classification of Diseases (ICD)®, Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT,
see table 1, annex), or Logical Observation Identifiers Names and Codes (LOINC, see table 1, annex).
Thus, the wheel does not have to be reinvented for the semantic data annotation in personalised
medicine, but existing annotation standards have to be consistently applied.

Info box 2: Community vs. formal standards

Community standards usually reflect the results of a grass-roots standardization effort from a specific user group and
are created by individual organizations or communities. They can cover a broad variety of different topics and are
typically domain-specific with a focus on the community of their origin, whereas there is no formally prescribed
process for creating, agreeing and consensus-building.

Formal standards are created by official national or international standardization bodies (e.g., CEN/CENELEC or ISO)
based on the consensus principle, in a defined procedure with the participation of all interested stakeholders. Once
completed and released, formal standards are internationally respected and recognized as state of the art — also from
a quasi-legal perspective, although they do not have regulatory functions. Nevertheless, sometimes standards are
referred to in directives or laws and thus acquire a "law-like" character.

3 UniProt: https://www.uniprot.org/;

4 Protein Ontology: https://www.ebi.ac.uk/ols/ontologies/pr
5 Gene Ontology: http://geneontology.org/

61CD: https://www.who.int/classifications/icd/en/
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Data-driven computational models for personalised medicine

The future development of personalised medicine is dependent on a vast exchange of data from
different sources, as well as harmonized integrative analysis of large-scale personalised medicine data
(Big Data in health). Computational modelling’ approaches play a key role in order to understand and
predict the underlying molecular processes and pathways that characterize human biology, but they
also lead to a more profound understanding of the mechanisms and factors that drive disease, hence
they allow personalised treatment strategies that are guided by central clinical questions.

Computational models have the potential to translate in vitro, nonclinical and clinical results (and their
related uncertainty) into descriptive or predictive expressions. Over the last decades, the added value
of such models, also called digital evidence, in medicine and pharmacology has increasingly been
recognized by the scientific community (Apweiler et al. 2018; Wolkenhauer et al. 2014; The CASyM
consortium 2014; Thiel et al. 2015), as well as regulatory bodies such as the European Medicines Agency
(EMA guideline on physiologically based pharmacokinetic (PBPK) reporting® ) or the US Food and Drug
Administration (FDA guidance document: Reporting of Computational Modeling Studies®) — irrespective
of their ultimate use or application. Computational models are now integrated in different fields in
medicine and drug development expanding from disease modelling, biomarker research to assessment
of drug efficacy and safety. In this context models are regulated as medical devices, an area explored in
detail by the Virtual Physiological Human Institute commentary paper “Verifying and Validating
Quantitative Systems Pharmacology and In silico Models in Drug Development: Current Needs, Gaps,
and Challenges” (Musuamba et al. 2020) and regulated by relevant authorities (e.g., EMA and/or FDA
guidelines). In silico approaches are also expanding in neighbourhood fields such as pharmacoeconomics
(Dasbach and Elbasha 2017; Ademi et al. 2013), analytical chemistry (Oliveri 2017; Zaborenko et al. 2019)
and biology (Hood and Tian 2012; Weston and Hood 2004).

Patients will greatly benefit from this development that equips personalised medicine with predictive
capabilities to simulate in silico clinically relevant questions, such as the effect of therapies, the response
to drug treatments or the progression of disease. Currently there are a number of computational
modelling approaches in pre-clinical and clinical research that are able to address these questions in
greater detail and, therefore, play a leading role for the future development of personalised medicine.

However, despite the growing popularity of computational modelling approaches (Morrison et al. 2018;
Saez-Rodriguez and Blithgen 2020; Wolkenhauer et al. 2014; Wolkenhauer et al. 2013; Apweiler et al.
2018), there are still many hurdles to overcome. Especially the integration of clinical and life science
data from multiple sources and types is a highly complex task. Figure 1 illustrates a typical workflow
followed in personalised medicine starting from the clinical question, and followed by identification,
access and harmonization of relevant data, the development of data model(s), the model validation, and
finally the application in a clinical setting.

7 Computational modelling in this context refers to mathematical and computational models of biological systems, such as
molecular modelling, modelling of subcellular processes, individual-cell or cell-based models, tissue/organ level models, body
systems level models (Wolkenhauer et al. 2014)
8 https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation
% https://www.fda.gov/regulatory-information/search-fda-guidance-documents/reporting-computational-modeling-studies-
medical-device-submissions

10
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Figure 1: Modelling workflow for personalised medicine studies.

Model creation starts with a clinical question followed by data collection, which can be derived from a
knowledge-driven (e.g., literature research) or data-driven (experimental data) approach. The data employed
need harmonized approaches for data integration to start the model construction. The initial model usually
undergoes several refinement and improvement iterations to enhance predictive capabilities. The use of
common standards (summarized in tab. 1, annex) is usually necessary for model building and curation process.
Accuracy measurements and validation processes are key, and should be transparent, while model output and
function should ideally be interpretable and explainable.

Model building key factors

Clinical and health related data are usually generated in different medical environments and by various
sources and systems; with the advent of health data created outside the health care setting, sources and
formats become even more diverse. Such heterogeneous data require harmonized strategies for data
integration utilizing broadly applicable standards that allow for a reproducible data exploitation to
generate new knowledge for medical benefits. For the development of validated predictive
computational models in personalised medicine two key factors of the model building process, for which
standardization is essential, are:

Data integration — Harmonized strategies and methods for integration of data
Model validation — Validation of models and simulations through the underlying clinical question

Standardization of data input is based on many common requirements. All model building needs
harmonized strategies to ensure comprehensive, high quality and unbiased data. This also includes
common languages and procedures to store, share and communicate results. In addition overarching
collaborations are key to increase diversity and sample size and all require clear concepts as well as
harmonized procedures to ensure reproducibility and interoperability for model building.

Common to all in silico models is a need for validation (Debray et al. 2015) and accuracy®, however, in
contrast to data input model validation methods are considered to be individual and type-specific. It is
important that any algorithm performs well on novel data that have not been used in training the
algorithm; i.e. the model should be able to generalize to new data from the same domain (Baldi et al.

10 http://www.clinicalpredictionmodels.org/doku.php?id=validation:start
11
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2000). There are guidelines and methods for validating models which are accurate and confident in
predictions, both in terms of accuracy and confidence in predictions. Performance evaluation of in silico
models should be transparent and consistent to existing guidelines, explaining the reasons for not doing
so when alternative methods are chosen.

It is important that the standards to be developed for model building (data input) and validation (model
validation) are commonly acknowledged by all the involved parties (clinicians, Health Technology
Assessment agencies, academia, industry, regulators and patient organizations but also funding
organization such as the EU-Commission investing heavily in sustainable research and technological
developments) and are relevant for all the types of models used in the clinic.

Data and model integration

Data integration: Currently there are no widely accepted, overarching strategies or concepts to
harmonize the integration of heterogeneous health and disease data for in silico models to interpret Big
Data for personalised medicine. What is lacking are standardization documents on a European or
international level (e.g., European Committee for Standardization, CEN; International Standardization
Organization, 1SO), and recommendations that allow exploitation of Big Data to develop true medical
benefits for an individual patient or stratified patient groups. In order to be effective, such
recommendations need to be disseminated broadly and adopted by the relevant scientific and clinical
communities. In silico modelling of all kinds requires high quality data integration to create reliable
output, but the vast quantities of research, medical and health data in existence are too disparate to be
harnessed optimally. Data can be integrated at different levels, also with regard to personal
identifiability. These represent different opportunities:

> Individual level integration: Data linked at the personal ID level can be used for personalised prediction of
disease progression for the individual, i.e. personalised therapy based on past disease and health data.
Individual level data integration is important for research in rare diseases, where patient numbers are low
and counting a patient more than once would affect data quality.

> Integration of variables: Data can be combined at the variable level, e.g., diagnoses, lab values, therapeutic
intervention, symptoms, scores, outcomes or omics.

> Integration of unstructured data: unstructured data can be integrated and processed together.

> Federation of data or validation of findings: Data sets can contribute to joint results by training an algorithm
sequentially on the data sets without combining them, or by using new data sets for validation. While there
are models that can process non-harmonized data and learn from them, this is often inefficient, and for
most systems of federation of clinical data, e.g., Observational Medical Outcomes (OMOP) Partnership'?,
data sets still have to be harmonized and interoperable to return useful results.

While some challenges (e.g., legal, ethical) are connected to national boundaries and limitations in
European and national data protection regulation as well as patients’ rights laws, e.g., requiring the
consent of individuals (e.g., patients), many others don't.

However, EU countries have achieved different levels in terms of data standardization. Here, we
examine some examples taken from the use case studies table presented in the annex, in terms of level
of data standardization and the impact on the research performed. Notably, lack of standardization in
data prevents both the re-use of data in later projects, and the validation of models with other data sets.

Harmonized strategies for data integration is key to standardization efforts in personalised medicine
and standardization of input data is both feasible and necessary. Data harmonization can take place
during data creation or post hoc, and is usually to some extent necessary for data integration. Data
harmonization is necessary because of:

11 OMOP: https://www.ohdsi.org/data-standardization/the-common-data-model/
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> Differences in Information Technology (IT) systems used in data generation, e.g., Enterprise Resource
Planning (EPR) systems and lab result software or hardware, at national, regional or local clinical centre
level.

> Adoption of different standards such as Nomenclature for Properties and Units (NPU) or LOINC.
> Differences in implementation of international terminologies such as ICD.
> Language differences in, e.g., unstructured text.

Data harmonization requires canonical interoperability (placement of the data in an ontology or
structure), syntactic interoperability (data packaging) physical interoperability, which can be a challenge
in cases of legal restrictions or very large data sets and semantic interoperability, which usually requires
mapping of data sets onto each other for comparison and/or analysis. For example, multiple data types
can be mapped into the OMOP common data model federation. Each transformation and mapping step
carries the risk of changing the meaning of the term slightly (e.g., use of synonyms in ontologies or lack
of terms), undocumented knowledge can be lost, and errors being created.

Alternatively, raw data can be pre-processed in similar ways, and harmonized mathematically to
produce larger data sets that can be analyzed together. Standard terminologies exist for the core
elements of clinical practice (diagnoses, symptoms and observations; interventions, procedures,
treatments and medication; health outcomes e.g., disability, quality life years (QALYs), symptom status),
such as Medical Dictionary for Regulatory Activities'? (MedDRA), SNOMED CT*3 — or Digital Imaging and
Communication in Medicine!* (DICOM, SO 12052) (DICOM_Secretariat 2020). For a more
comprehensive overview of already existing standards relevant for personalised medicine (please see
table 1, Annex).

These and other core standards are widely used, and most systems either incorporate these standards
in data generation, or produce data which can be mapped to them. However, these standards also
contain regional or national implementations that require mapping. One core area which is missing
comprehensive standards is patient identification. Data from disparate clinical sources can be linked at
the national level, but not across borders; conversely, data from research projects can be linked across
research centres, but not necessarily to clinical data. Harmonization of patient identifiers could have the
potential to be ethically problematic as they could facilitate combination of data sets and re-
identification of data subjects. However, with an ethically sound regulation of patient data sharing, a
common identifier in itself is not regarded as problematic.

Model integration: Given the increasing flood and complexity of data in personalised medicine,
standardization of these data and their documentation are crucial. This comprises the consistent
description of the applied diagnostic and therapeutic methods and also the workflows for:

> Data processing, analysis, exchange and integration (e.g., into model codes and calculations).
> Biological sources (the individual or patient, organs, tissues, etc.).

> Corresponding medical information (e.g., electronic health records, diagnostic results and values, as well as
drug concentrations, responses to treatments, biomarkers).

> The setup, handling and simulation of the models.

Hence, standards for formatting and describing data, workflows and computer models have become
important, especially for data integration across the biological scales for multiscale approaches
(Schreiber et al. 2019).

To this end, the corresponding scientific communities have defined many grassroots standards to
consistently structure and format data, models and their metadata for modelling in the life sciences
(Golebiewski 2019). These standardization efforts are driven by standardization initiatives, such as the

12MedDRA: https://www.ich.org/page/meddra
13 SNOMET CT: http://www.snomed.org/
14 DICOM: https://www.dicomstandard.org/
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Computational Modelling in Biology Network (COMBINE)* (Myers et al. 2017; Hucka et al. 2015). For
providing the potential users with an overview and comparable information about such standards, web-
based information resources have been developed and are publicly available, such as the NormSys*®
registry for modelling standards.

For facilitating the integration of data and models, formatting and description standards have to be
harmonized to become interoperable and allow interfacing between the often heterogeneous data sets
and/or model parts. To support this, novel standards are defined by the International Organization for
Standardization (ISO) in its technical committee 276 — Biotechnology’ (ISO/TC 276). One example is the
emerging standard ISO 20691 “Requirements for data formatting and description in the life sciences for
downstream data processing and integration workflows”, which defines a guideline and framework for
interoperable community data standards in the life sciences with emphasis on their application. Such
standards aim at enhancing the harmonization and interoperability of standards for life science data and
models and therefore facilitate complex and multiscale data integration, as well as model building with
heterogeneous data gathered across the domains.

The following table contains a summary of the main challenges for data integration (data input) that
occur during model building:

General challenges for data integration and model building
> High degree of variability regarding data types (structured, unstructured, molecular, clinical, patient-
reported, etc.)

> Differences in coding and calculation within data types (between machine variability, different
measurements, etc.)

> Heterogeneous utilization of existing data
> Costs of data harmonization efforts are currently high, in terms of time, resources and data quality loss
> Models relevant for clinical use need to fit for purpose

> Differences in IT systems used in data generation, e.g., EPR systems and lab result software or hardware, at
national, regional or clinical centre level

> Adoption of different standards such as NPU or LOINC
> Differences in implementation of international terminologies such as ICD
> Language differences in unstructured text, and other factors

Common recommendations for data integration

Taken the above discussed challenges into account a common set of recommendations applicable to
most model building approaches can be defined:

R1: Develop tools to standardize and harmonise the data from different centres and laboratories
that work with or develop similar modelling approaches

R2: Develop data quality assessment frameworks to evaluate data used for modelling

R3: Develop clear and harmonized reporting (Artificial Intelligence (Al) Section)

R4: Exclude non-harmonized or inappropriately pre-processed data (compare Al Section)

R5: Make sure that the standards to be developed for model building (data input) and validation
(model validation) are commonly acknowledged by all the involved parties e.g., clinicians, Health
Technology Assessment (HTA) agencies, academia, industry, regulators and patient
organizations but also funding organization such as the EU-Commission investing heavily in
sustainable research and technological developments

15 COMBINE: http://combine.org
16 NormSys: http://normsys.h-its.org
17 1SO/TC 276: https://www.iso.org/committee/4514241.html
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Info box 3: Are formal standards used in modeling and where are the deficits?

“The Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD)
Statement includes a 22-item checklist, which aims to improve the reporting of studies developing, validating, or
updating a prediction model, whether for diagnostic or prognostic purposes. The TRIPOD Statement aims to improve
the transparency of the reporting of a prediction model study regardless of the study methods used. This explanation
and elaboration document describes the rationale; clarifies the meaning of each item; and discusses why transparent
reporting is important, with a view to assessing risk of bias and clinical usefulness of the prediction model. Each
checklist item of the TRIPOD Statement is explained in detail and accompanied by published examples of good
reporting. The document also provides a valuable reference of issues to consider when designing, conducting, and
analyzing prediction model studies” (Collins, Reitsma, et al. 2015a; Moons et al. 2015).
The guidelines have been repeatedly found to be inadequately followed, such that few machine learning (ML) studies
meet basic reporting standards for clinical prediction tools, and even fewer make their models available such that
they can be reproduced or adequately evaluated (Heus et al. 2018b; Liu et al. 2019; Wang et al. 2020).
However, the situation is evolving in the right direction. The ML community working with health data is increasingly
aware of reporting standards. The digital health journals do not uniformly require them — but the medical journals
do, usually either

> Standards for Reporting of Diagnostic Accuracy Studies (STARD, Cohen et al. 2016),

> Strengthening the Reporting of Observational studies in Epidemiology (STROBE, Cuschieri 2019) or

> Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD, Collins,
Reitsma et al. 2015b).

With ML research increasingly being published in medical journals, such as the Lancet Digital Health, we foresee that

reporting standards will be followed more frequently. Journals’ requirements and funders’ enabling should thus
progress hand-in-hand.

Computational models addressing clinically relevant questions

The current paper reflects on modelling approaches that are able to address central clinically relevant
questions. In the following section the most relevant modelling approaches able to address these
questions will be discussed. We will provide an overview focusing on state of the art, challenges and
recommendations to these modelling approaches.

Computational model approaches relevant for clinical applications

Model: Cellular systems biology
Purpose: Dynamic mechanistic models of complex biological processes and networks

Model: Risk prediction for common diseases
Purpose: Prediction of disease prognosis

Model: Disease course and therapy response prediction

Purpose: Prediction of disease prognosis

Model: Pharmacokinetic/-dynamic modelling and in silico trial simulations

Purpose: Prediction/simulation of drug exposure and effects in (different components of) living systems;
simulation of ‘virtual populations’ for testing of pharmacological therapies and devices

Model: Artificial intelligence

Purpose: Data-driven approaches utilizing Al and ML
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Cellular systems biology

There are numerous experimental methods to observe and quantify processes within an organism at an
unprecedented level of detail. Some of these molecular approaches have already entered clinical
diagnostics ((Hastings et al. 2020; Briganti and Le Moine 2020), adding information about the patient,
generating vast amounts of individualized data. In silico processing and interpretation of clinical
measurements can be either data-driven or mechanism-based (also called top-down and bottom-up
approaches of systems biology (Bruggeman and Westerhoff 2007; Edwards and Thiele 2013)).

Mechanism-based concepts aim for a structural representation of the governing physiological processes
based on model equations with limited amount of data, which are required for base model
establishment (Saez-Rodriguez and Blithgen 2020) or, alternatively, on static interacting networks
(Vidal, Cusick, and Barabasi 2011; Fiers et al. 2018). Therefore, on one side mechanism-based concepts
could rely on gathering information from diverse resources, ranging from literature to experimental
data, and combining them to build an equation based model; a process that can be personalised by
changing the parameters according to the patient data, and simulate potential outcomes and treatment
approaches. The construction of mechanism-based models requires time-consuming manual efforts.
Often, these efforts are disease-specific, although models for different diseases may overlap. On the
other side strategy, mechanism-based concepts combine a variety of data like genome-wide association
studies, identified risk factors single nucleotide polymorphisms (SNPs), pathway(s), symptoms and
phenotypes to build a simple but informative network that provides information on the consequences
of a genetic modification, guides precision medicine, explains and avoids drug resistance in cancer
chemotherapy, and suggests the most efficient drug to hit a target (Halu et al. 2019; Zhou et al. 2014,
van der Wijst et al. 2018).

Data-driven approaches (Wolkenhauer et al. 2014; Apweiler et al. 2018) require, as the name implies,
sufficiently rich and quantitative time-course data to train and to validate the model. Due to its black-
box nature, the model validation process relies on performance tests against known results. Thus,
personalised data-driven models cannot rely exclusively on the input of one patient. To properly build
the model, one needs a large set of personal data from a variety of patients with defined inclusion
criteria (e.g., similar symptoms) and an additional data set for comparison, e.g., from healthy persons.
Thus, the main challenges are the unavailability of sufficient data in high quality, incomplete data sets
and sparse training data (Alber et al. 2019). Availability of data furthermore depends on legislation, data
security matters and relies on safe anonymization strategies (see also Al section below).

Both, data-driven approaches and mechanism-based concepts share the general requirements for data
harmonization, data integration, data and method standardization and documentation (Apweiler et al.
2018; Schreiber et al. 2019; Neal et al. 2019). Ultimately, from a technical point of view, the basic
workflows are largely complementary.

Challenges

Abstraction vs size
One challenge is to create models that balance the level of abstraction (size) with comprehensiveness. Thus,
one challenge is to make the efforts reproducible and reusable. Modelling the processes in smaller modules
and connecting them automatically would improve the situation and accelerate future model creation and
adaption. It would also support collaborations for model construction.
Data for validation
In addition to rules for data security, anonymization and consent the challenge here is the availability of data
which highly depends on:

> Development of prediction models that can easily be adopted to individual patient profile

> Efficient parameter estimation tools to cope with population and disease heterogeneity
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> Not overfitting the model to the experimental/patient data
> Optimization method for model predictions in a realistic parametric uncertainty
> More flexibility in models to cope with missing data (e.g., diverse patient profiles)

> Scaling from cellular to organ and to organism levels (high clinical relevance, high hurdles for regulatory
acceptancy)

Recommendations

Data integration: See common recommendations for data integration in section “Data and model
integration”

Model validation: Mechanistic models can serve multiple purposes, which makes it difficult to have a
strict set of guidelines. Models in systems biology are encoded and curated by community defined
standards including machine-readable format Systems Biology Markup Language (SBML) (Hucka et al.
2018) and MIRIAM (Novere et al. 2005) respectively; but this does not imply a direct application for
clinical practice.

Performing numerical predictions, sensitivity and identifiability analysis on mechanistic models (Ingalls
and Sauro 2003; Raue et al. 2009) are important systems theoretic tools to validate a model. For
instance, identifiability analysis provides conclusions about the uniqueness of the model parameters
regarding model structure, i.e. whether there could be others sets of parameter values that lead to the
same behavior/predictions. This could be described as a validation of the parameter values.

The most basic form of validation for a mechanistic model is how simulations numerically match
experimental/patient data.

R1: Develop a standardized protocol for patient history and information and integrate with clinical
standard protocols, e.g., electronic health records (EHRs) and FHIR.

R2: Agree on the use of patient expression profile e.g., mRNA or protein concentration.

R3: Develop prediction models with a fitting hypothesis.

R4: Use model replication and reproduction before considering clinical trials.

R5: Compare model predictions (e.g., biomarkers selection) with established clinical ones.

R6: Develop of user friendly graphical interfaces to ease the use of models in clinic.

Info box 4: Hybrid or grey box models

A promising option to combine data-driven statistical learning and mechanistic, knowledge-based models are
hybrid models — also called grey box models or semiparametric models (Frohlich et al. 2018). In this approach,
structurally well-understood sub-models are linked through input- and output relations (Muller and Schuppert
2011; Balabanov et al. 2013). The functioning of these connecting nodes, in turn, needs to be trained with
experimental data according to concepts from statistical learning. It is thus possible to combine sub-models with
very different levels of prior mechanistic understanding and to compensate in particular for a lack of knowledge
in some of these sub-systems. Hybrid modelling thereby supports a modular modelling approach where models
with different levels of granularity. If new data and information requires an extension of a specific building block,
the corresponding sub-model can be revised and afterwards be re-integrated into the overall model network.
Thereby it is possible to also combine very heterogeneous model parameters representing for example transfer
of mass and energy on the one hand and flow of information on the other. Potential applications are models of
the cardio-renal systems (Hallow and Gebremichael 2017), which combine mechanistic descriptions of the
cardiovascular system and nephron filtration and reabsorption with neurohormonal regulation.
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Risk prediction for common diseases

Common complex diseases are multifactorial and polygenic; there are multiple genetic and
environmental (e.g., diet, smoking) factors that affect an individual’s risk of having a disease. The
polygenic model assumes that the genetic variance of a disease is a combination of small effects of
multiple variants across the allele frequency spectrum. Genome-wide association studies (GWAS) that
scan the genomes of thousands of individuals offer a very powerful method to identify these multiple
genetic risk factors for having the disease.

The emergence of GWAS with the ‘Common Disease, Common Variant’ hypothesis (Pritchard and Cox
2002) soon proved not to comprehensively capture the polygenic and multifactorial nature of common
diseases. In addition to the continuous need for larger sample sizes to increase statistical power to
detect more genetic associations with diseases of interest, the missing heritability [i.e. the missing
portion of phenotypic variance in a population attributable to additive genetic factors; (Manolio et al.
2009)] issue has highlighted the additional factors to be considered in genetic studies such as:

> Accuracy of heritability estimates and contribution of the environmental factors

> Allelic architecture of common diseases

> Contribution by the rare (frequency<1%) and low frequency variants (1%<frequency<5%)
> Contribution by structural variants such as copy number variants

> Epigenetic effects

> Parent-of-origin effects

> Accurate phenotype definitions

> Lack of population diversity in genetic studies

Taking these factors into account to determine the genetic risk factors for common diseases is critical
for the estimation of polygenic risk scores (PRS) as well. However, the application of polygenic scores
are still proved to be of importance for: (i) Association testing with the composite PRS that can provide
evidence for a polygenic model for a disease even when the statistical power of a GWAS is limited as in
schizophrenia (International Schizophrenia et al. 2009); and (ii) Disease risk prediction for individuals,
which has been less successful due to the limited power of PRS for distinguishing affected individuals
from unaffected individuals, hence, could not be translated into clinical use. Use of data for genome-
wide variants also did not improve the clinical discriminatory power of PRS (Dudbridge 2013).

PRS is estimated to predict the risk of an individual having a disease based on the individual’s genetic
make-up. The potential of PRS is that it can aid in early diagnosis as well as precision medicine, leading
to better health outcomes for individuals. There are different approaches developed for the estimation
of PRS that may lead to some improvement over time (Marquez-Luna et al. 2017; Duncan et al. 2019;
Choi, Heng Mak, and O’Reilly 2018). Overall, the main approaches rely on:

> The genetic structure of the relevant population, i.e. the linkage disequilibrium structure across the genome
to minimize the correlation among the variants included in the PRS estimation

> Known genetic associations with the disease of interest and the effect sizes from GWAS to be used as
weights to calculate the PRS

> Adjusting for ancestry by using principal components

> A training GWAS using a discovery sample and an independent test sample. PRS is calculated by summing
risk alleles per individual and weighing each allele with its effect size (Grinde et al. 2019; Pare, Mao, and
Deng 2017; Vilhjalmsson et al. 2015; Okser et al. 2014; Wray et al. 2013; Dudbridge 2013; International
Schizophrenia et al. 2009; Wray, Goddard, and Visscher 2007)
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Challenges

Genetic analysis

Although genetic analyses themselves are, in most part, based on well-defined and well-accepted standards,
there are still multiple challenges regarding how these analyses are performed across studies and populations. In
many cases, the challenges are due to problems simultaneously relating to input data, models and model
validation; such a key challenge is the lack of ethnic diversity in input data, making it difficult to have adequate
model validation across different populations, and hence, to extrapolate risk scores to these populations. Many
studies have highlighted the limitations of applying PRS obtained from European cohorts to other populations due
to bias and reduced predictive accuracy (International Consortium for Blood Pressure Genome-Wide Association
et al. 2011; International Schizophrenia et al. 2009; Brown et al. 2016; Marquez-Luna et al. 2017).

Choice of appropriate methods

Methodological choices when preparing the input data preparation such as use of different filtering thresholds is
not stringent and harmonized across studies, and therefore, model assumptions may vary. A review of the first
decade of PRS studies (2008-2017), it has been demonstrated that methodological choices relating to the
appropriate use of linkage disequilibrium structure and varying variant frequencies across populations are highly
relevant for more accurate application of PRS and its predictive performance (Duncan et al. 2019).

Access to genetic data

For both European and non-European populations, a comprehensive consideration of the complete allele
frequency and effect size spectra is still required — genetic associations with common and low frequency variants
are detected with the availability of powerful studies with increasing sample sizes. But rare variants still remain
understudied and their contribution to polygenic risk is not well accounted for. In addition, structural variants
(e.g., copy number variants, currently not even listed in GWAS catalogue) are also not studied as widely as SNPs.
Exome and whole genome sequencing is becoming more affordable for larger sample sizes yet, it is still not widely
available in many cases. Access to cellular/tissue-relevant data for functional analyses is also key for further
progress in application of PRS. Moreover, environmental factors such as life style are also necessary to
understand the contribution of genetic variants to disease risk. However, measurement/record of such factors are
often missing, or not as accurate as the genetic factors. Clinical characteristics of individuals including
known/potential co-morbidities and family history have traditionally been considered in risk assessment of
patients. Effectively combining these with PRS have the potential to significantly improve the predictive power
further (Khera et al. 2018; Yang et al. 2010). National biobanks and international consortia providing large sets of
different data types (e.g., omics, clinical, environmental) from diverse sample populations will aid in the
emergence of useful genetic predictors. Data sharing in a harmonised manner as well as transparency of methods
used for analysing such large data sets will be of great importance for reproducible studies and
translatable/interpretable results across populations.

In summary

> Access to individual-level genetic data from diverse populations and harmonised summary statistics across
published studies (i.e. publicly available data)

> Limited replication of genetic associations and poor application of PRS diverse populations (e.g., too poorly
represented to be of interest for specific analyses), specifically of mixed or non-European ancestry

> Varying transparency of methodological choices and reproducibility
> Limited cellular/tissue context and harmonized functional data availability across populations/studies
> Missing environmental information coupled to genetic data

Recommendations

Data integration: See also common recommendations for data integration in section “Data and model
integration”.

R1: Ensure highest possible diversity and sample sizes further for all the genetic studies on complex
diseases as well as for performing functional studies.

R2: Enable more transparent, standardized and detailed methods clearly stating methodological
choices made with necessary justifications to enhance reproducible research.

19



EU-STANDS4PM — White Paper: Towards in silico approaches for personalised medicine

Disease course and therapy response prediction

Despite all advances in medicine predicting the disease course and treatment response of an individual
patient remains a major challenge. For complex diseases, such as chronic inflammatory diseases,
degenerative disorders or cancer entities, it is still virtually impossible to predict the disease behavior
(mild vs. severe, stable vs. progressive) early in the disease course. Disease classifications often use
morphometric scores, which reflect rather the secondary tissue damage (e.g., metastasis and tumor size
in cancer or stenosing inflammation in inflammatory bowel disease (IBD)) or late stage processes (e.g.,
memory loss in Alzheimer’s disease) than molecular measurements which would allow a more precise
modelling of disease course (Apweiler et al. 2018). It is thus important to develop biomarkers and
dynamic models which allow an improved timing of therapy introduction and choice of therapy scheme
(“wait and see” vs “hit hard and early” (Schultze, consortium, and Rosenstiel 2018)). For many complex
diseases, parallel first-line targeted treatment options have emerged. Although such targeted therapies
(e.g., anti-cytokine antibodies (biologics) or different kinase inhibitors) have led to significant
improvements in disease control and quality of life of patients, both diseases suffer from high rates of
non-response to the approved therapies. It is self-evident that companion diagnostic tests are
mandatory to avoid unnecessary exposure to non-efficacious treatments. New diagnostic standards for
targeted therapies could include also more complex and expensive sets of markers and standardized
models of individual pharmacokinetics as -besides the potential effect on individual affliction and quality
of life- an individually optimized treatment would lead to significant reduction of health care costs.
Currently, simple stratifying molecular tests can only be performed for certain cancer types, as recurrent
mutations in driver genes are unequivocally linked to success of specific treatments (e.g., activating
kinase mutations in EGFR and EGFR tyrosine kinase inhibitors (Maemondo et al. 2010; Mok et al. 2009)).
Other molecular data layers (transcriptome, microbiome, epigenetic modifications, and single cell
heterogeneity) are clearly on the horizon. A systems-oriented, model-based medicine promises to make
these layers available for clinical medicine and to provide a prediction of ‘multi-factorial’ diseases at
unprecedented resolution, in a way that clinicians can use the information in their daily decision making.

Challenges

Standardized clinical information for measuring the disease of interest

All algorithms, which make use of complex molecular data sets, usually are trained on simple clinical categories
(e.g., response or non-response, clinical scores), which depend on clinical assessment and may differ between
national guidelines or even from hospital to hospital. Disease scores used in phase |l pivotal trials are often
chosen for historical reasons, ease of assessment in a multicentre setting or are tailored to the specific
compound. It is important to understand that the same scrutiny, which is needed for developing a molecular
method, must also be put into the development of clinical parameters, which measure disease activity. A
physician’s assessment of disease (e.g., endoscopic picture in IBD) may be very different from the patient’s
perspective (e.g., fatigue as a major symptom of the underlying chronic inflammatory process). Successful
models in systems-oriented medicine have to start with a harmonization process for a precise, multi-
dimensional definition of disease severity for any given disease under study.

Clinical challenges of standardized production of data and transparent models

It is self-evident that, in order to be transferrable to the clinical situation, all molecular data generation and
interpretation must follow a transparent and quality-controlled workflow. Foreseeable specific challenges for
clinical translation are:
> The procurement of samples and preparation of biological material (e.g., single cell RNA extraction) are key
to standardized results. Consortia efforts must be developed (such as in: (Lappalainen et al. 2013; t Hoen
et al. 2013; Alioto et al. 2015)) to harmonize sample extraction standards and to develop feasible ring trial
formats for given molecular analysis types. As technologies are developing fast modular certification
solutions (example gene panels) needs to be considered.
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>

Transparent reduction of contents and definition of appropriate marker sets and dynamic models are key
for clinical translation. Currently, usually small clinical cohorts are typed for a given molecular data layer
(e.g., single cell RNA profiles). The size of the endeavour is defined by academic economic rules (i.e.
available budget, track record in the field, chances to obtain future grants). The leading principle is
competition, as new results and algorithms are expected to be part of a “successful” scientific story.
Publishing negative results (e.g., failure of replication of a previous result) are suppressed by the academic
community and journal editors (lack of novelty), despite all public declarations. As an example, more than
50 papers on molecular indicators of anti-TNF response/non-response have been published, none of which
have been formally validated in independent multi-centre replication studies or led to a prospective
transnational clinical trial. Likewise, head-to-head trials comparing different therapeutic principles
stratified by molecular models are necessary, which do not fit into a usual pharma-driven multicentre
scheme, as it would require that different companies interact and potentially share a therapeutic space by
molecular definition and not by marketing competition. Investigator Initiated Trials which are financed by
usual funding schemes of academia (national research agencies, EC) are currently underpowered to achieve
this goal.

Translation of complex information into simple clinical language. Current education of physicians does not
convey enough knowledge on the emerging field of systems medicine. With current efforts to transform
medical curricula into a more practice-oriented approach, this problem will be further aggravated. It is
obvious that neither the increasingly complex molecular background can be taught in depth nor can the
comprehensive mathematical or informatics knowledge be fully covered. Yet, it is important to include
principles of this potentially disruptive approach into a “normal” medical education (Schultze, consortium,
and Rosenstiel 2018). Systems medicine has to be perceived as mainstream for medical students. Most
importantly, all disciplines have to develop a common language, which ultimately will also be used to
communicate results to patients. Systems medicine results will only be used in clinical practice when results
can be interpreted by clinicians and conveyed as a rationale decision making element to the individual
patient. This does not only involve the development of intuitive visualization of rigorously tested results,
but also insights into molecular analyses and critical appraisal of limitations of models by the physicians.
Curricular postgraduate programs, specialty training and faculty programs are needed.

Recommendations

Data integration: See common recommendations for data integration in section “Data and model
integration”

Model validation:

R1:

R2:

R3:

R4:

R5:

R6:

Harmonize disease specific scores including objective parameters of disease activity and
progression.

Support the development and validation of innovative patient-reported outcome tools for
clinical trials including the safe and easy use of app- and wearable based technologies.

Define minimum clinical criteria for a systems medicine trial combined using harmonized scores
and quantitative, validated patient reported outcomes into account.

Develop concepts for integrating of model-based prediction and Al content into curricular
education in medicine and medical life sciences.

Commence stakeholder discussions including political decision makers to overcome financial
and intellectual hurdles in large European consortia trials, ideally involving both academic and
European industry partners (current IMI schemes could serve as a starting point).

Develop new models of public-private partnerships for a strong European health care economy
on IP participation and protection of mutual interests.
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Pharmacokinetic/-dynamic modelling and in silico trial simulations

Pharmacokinetic/pharmacodynamic (PK/PD) modelling can usefully translate in vitro, nonclinical and
clinical PK/PD data into meaningful information to support decision making during drug development.
At individual level, drug PKs can either be described by non-compartmental analysis, compartmental PK
modelling or by physiologically-based PK (PBPK) modelling. At population level, population PK (popPK)
models have become the most commonly used top-down models that derive a pharmaco-statistical
model from observed systemic concentrations. PopPK models are now widely accepted in the context
of drug development and regulatory assessment: they have a relatively simple mathematical structure
and a high impact in the understanding of the benefits and harmful effects one can expect from a given
drug. PopPK models describe the time course of exposure (drug concentrations) to the drug of interest
at a population level, accounting for their variability. When mixed-effects approaches are used, model
parameters are characterized by a fixed and a random component. Random effects enable us to describe
inter-individual variability usually explained by patient’s characteristics such as the weight, the age, the
sex and the renal function.

In contrast to population PK approaches, PBPK modelling aims to reproduce the physiology of an
organism at a larger level of detail. Different organs are explicitly represented in a PBPK model and they
are assigned specific physiological properties such as volumes, composition and blood flow rates. The
values assigned to model parameters need to be scientifically sound. Of note, PBPK models allow to
simulate drug concentration profiles in plasma and different tissues which can be seen as the upstream
input of any drug-induced effect.

With regard to personalised medicine PBPK modelling offers a large variety of possibilities due to large
level of detail of the underlying model structure. PBPK model building usually starts with the
development of a base reference model for an average individual based on mean values of physiological
parameters. However, the integration of parameter values from single patients is directly possible, once
this information is available. This is in particular supported by the large granularity of PBPK models which
may represent physiological information from different levels of biological organization. Therefore, very
diverse patient-specific information can be considered ranging from a the absorption, distribution,
metabolism, and excretion (ADME) phenotype of a patient (Lippert et al. 2012) to specific
pathophysiological alterations at organ level (Edginton and Willmann 2008). There are guidelines by
EMA® and FDA?® for model development and model evaluation as well as risk assessment of simulation
outputs. Consideration of these guidelines is mandatory for regulators submissions including PBPK
simulations.

PK/PD modelling involves on the one hand a quantification of drug absorption and disposition (PK) and
on the other hand a description of the drug-induced effect (PD). Of note, PK/PD models (Gerlowski and
Jain 1983; Pérez-Urizar et al. 2000) need to cover both drug disposition that drive drug concentrations
in different components of the body as well as specific aspects of the disease itself to capture the
relevant therapeutic effect. This can be done either using a top-down approach which is very often data-
driven. Alternatively, bottom-up approaches can be applied for mechanistic description of drug
disposition as well as drug action. PK/PD models and quantitative systems pharmacology (QSP) both aim
for mechanistic and quantitative analyses of the interactions between a drug and a specific biological
system (van der Graaf and Benson 2011).

Classical PK/PD models largely focus on the pharmacology of single, isolated pathways through the
consideration of dose-effect correlations (Derendorf and Meibohm 1999). Vice versa QSP aims at the
integration of network models from computational systems biology to capture the effect of a drug at
network level (Danhof 2016). The connection between the response variable (biomarker) in PK/PD or

18 https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpk-modelling-simulation
19 https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/modeldata-format
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QSP models and the clinically relevant outcome is not always straightforward. These models would in
these cases need to be complemented by biomarker analyses or dose-exposure-response analyses.

Another important concept to mention in drug effects modelling are semi-mechanistic or
physiologically-motivated models. Such reduced models may be preferable if only key aspects of
physiological functions need to be described. This can for example become necessary when important
parameters are not accessible experimentally, the considered physiological function is too complex, for
example in the case of multi-tissue cross-talk at whole-body level. In recent years several semi-
mechanistic or physiologically-motivated models have been published which describe amongst others
tumour growth (Simeoni et al. 2004), chemotherapy-induced myelo-suppression (Friberg et al. 2002) or
cardio-renal crosstalk (Hallow et al. 2018) to name a few.

Building upon individualized PBPK models, QSP models provide a unique possibility to integrate
personalised omics data in a whole-body context. It is hence a plausible expectation, that PBPK-based
QSP models or similar modelling approaches will in the future be used to represent personalised patient
data in digital twins and to optimize therapeutic outcomes of drug treatments. Such approaches may
thereby help to overcome the currently prevailing “one-size-fits-all” paradigm in drug treatment through
model-informed precision dosing. This includes in particular tailored patient-specific therapies with
maximum efficacy yet minimum adverse side effects.

However, successful examples for a standardized import of individual patient data into PK models in
clinical practice or even basic research are unknown to date. It should be noted that in the case of PBPK
modelling, the integration of patient data from multiple levels of biological organization ranging from
the molecular scale to whole-body level into the computational model structure is —from a technical
point of view— straight forward. A long-term goal would be a virtual twin, were personalised patient
information is integrated into a computational model for an individualized design of treatment
schedules.

Already today, PK and PBPK modelling are used for simulations for virtual patient populations in in silico
clinical trials (ISCT). This term refers to: “The use of individualized computer simulation in the
development or regulatory evaluation of a medicinal product, medical device, or medical intervention”
(see also Avicenna roadmap?°). The concept is that computer simulations are proposed as an alternative
source of evidence to support drug development to reduce, refine, complement or replace the
established data sources including in vitro experiments, in vivo animal studies, and clinical trials in
healthy volunteers and patients.

The technical definition of clinical trial simulations (CTs) includes the generation of a response for a
virtual subject by reproducing the trial design, the disease progression, the drug and the patient’s
characteristics and behaviour using mathematical models and numerical methods (Teutonico et al.
2015). The input in an ISCT simulation tools (also called clinical trial simulators) include:

> A disease and drug effects model component (disease model (e.g., system biology model) + drug exposure
and effect model (e.g., PBPK, QSP model, agent-based models, etc.)

> A patient intrinsic characteristics component: including the relevant characteristics (biometry, disease stage,
co-morbidities, genotypes for relevant enzymes, phenotypes for relevant pathways, etc.) of the patients
whose outcome/response need to be simulated

> Trial design component: including other design factors such as dosing regimen, treatment duration,
compliance, co-medications, dropouts, etc.

Thanks to appropriate computational methods, this input will permit to simulate/predict predefined
response variables in (subgroups of) the target population or in particular types of patients, in order to
address different questions (e.g., dose selection, prediction of efficacy or safety, prediction of drug-drug

20 Avicenna roadmap in silico clinical trials (download): https://www.vph-institute.org/avicenna.html
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interactions, identification of sensitive subset of patients, etc.). The most relevant ISCT components are
discussed below:

Disease and drug effect model component: This component of the ISCT can potentially include various
types of models to describe the time course of the disease and/or drug exposure and response.
Technically wise, these models include not only the mechanism-based and fully mechanistic models
described above: i.e. systems biology/medicine models, PK/PD, PBPK, and QSP models but also semi-
mechanistic models (e.g., agent-based models, multi-physic models) and rather empirical and fully data-
driven models (e.g., approaches based on machine learning and artificial intelligence). All these models,
irrespective of their complexities are developed to address similar applications in the context of drug
development or treatment individualization. These include:

> Determination of drug efficacy in special populations (renally or hepatically impaired, children, elderly, rare
diseases, etc.) with very limited or efficacy data generation in these target populations.

> Determination of the impact of drug-drug interaction without clinical data.
> Study design optimization: dose selection or power computation for Phase |, Il and Il studies.

Over the last decades, the added value of in silico models (also called digital evidence) in
medicine/pharmacology has increasingly been recognized by the scientific community irrespective of
their ultimate use/application. In silico models are now integrated in different fields in medicine and
drug development expanding from disease modelling, biomarker research to assessment of drug
efficacy and safety. In silico approaches are also expanding in neighbourhood fields such as
pharmacoeconomics, analytical chemistry and biology.

Virtual patient generation component: In order for the simulation output to be relevant, the response
variables need to be generated for virtual patients who carry the same characteristics as the target
population. For this purpose, covariate distribution models play an essential role. They describe patient-
specific aspects defining e.g., patient demographic information, baseline disease characteristics, co-
morbidity and concomitant medication. In the context of personalised medicine, these details may be
considered as a vector containing the patient information. Disease epidemiology registries can be useful
to inform this component of the simulators.

Trial design component: This is the so called ‘trial execution model’. It represents the design variables of
interest in a simulation exercise (e.g., dosing regimens, selection criteria, stratification rules, study
duration, etc.). This not only reflects the patient’s behaviour and comprises those factors that determine
the trial execution features, such as adherence and missing records, but also reflects sponsors’,
physicians’ or investigators’ decisions such treatment duration.

While ISCT applications involving pharmaco-statistical PK and PKPD models are now well established and
largely accepted, it is expected that the ISCT of tomorrow should include more mechanistic models
incorporating available physiological and biological knowledge and capturing the feature of individual
patients, and introducing the concept of the patient-specific model. The latter is however considered to
still be at its infancy essentially due to the issues described above, that hamper the acceptancy of
mechanistic models.
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Challenges

Availability of public repositories

PBPK models can in particular be specified to present the PK of various patient cohorts (e.g., paediatrics, elderly
patients, different genotypes, hepatically impaired patients, etc.). For simulation of such virtual patient cohorts it
is mandatory, that biometric information (gender, age, body mass index) as well physiological information (organ
volumes, blood perfusion rates, etc.) is available. At population level such physiological information can be for
example taken, for example, from public databases such as the International Commission on Radiological
Protection (ICRP) reports. However, such public repositories have not been developed for PBPK models, rather
their applicability for such purposes is a side product.

Availability of data

As of now, the availability of adequate data sets (including patient biometry, physiology, phenotypes, genotypes
as well as the corresponding electronic health record) is the limiting factor. Generally, patient database provide a
useful repository for personalised patient data. However, most of such database are not comprehensive, i.e. they
only focus on specific aspects of physiology and missing important aspects of meta information. With regard to
PD modelling clinical endpoints, as well as corresponding omics data need to be documented. For the PD effect,
challenges from cellular systems biology apply here analogously. For PBPK and QSP models the main challenges
are:

> Reliable data sources for ‘systems’ related parameters are currently limited

> Methods for data generation, collection and integration are not standardized

> Reporting of results are very heterogeneous and inconsistent

> Tools to be used and criteria for model evaluation are very variable across projects

> Very limited platforms (‘systems’ model) are currently considered reliable and qualified for regulatory
submission

In addition, the following challenges are listed in the Avicenna roadmap:

> ISCT is being developed mostly through findings during research projects not specifically targeting the
subject.

> The lack of coordinated research and a technological development roadmap prevents the consolidation of
the sector and encourages fragmentation.

> The adoption of ISCT requires the active participation of a number of different stakeholders from industry,
regulatory agencies, patients’ organizations, etc. This requires a balanced, pre-competitive setting where
these discussions can be conducted without the risk of any unwanted bias.

> To be effective in a number of diseases ISCT must better predict the systemic responses; but more research
is necessary to unravel systemic processes using VPH strategies, systems dynamics models, and the lessons
learnt from process design.

> The use of in silico methods to translate from animal models to humans is promising in principle, but
requires a lot more research and technological development before it can be used effectively.

> The adoption of ISCT requires a significant investment in validation studies to identify those approaches
that work reliably, but when conducted publicly and openly, will help to establish some trust among
stakeholders.

The development of ISCT is a grand science. Because of its extreme interdisciplinary that can be tackled only in
very large research institutes, we need to support their formation, but also explore virtual organization
approaches where small groups can join forces and work together to tackle complex problems.
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Recommendations

Data integration: See also common recommendations for data integration in section “Data and model
integration”

R1: Enable standardized patient databases to develop personalised PBPK, personalised PK/PD and
QSP models that can inform optimal and personalised dosing in patient’s/subgroups (such
repositories, e.g., from national cohorts, should ideally encompass all kinds of patient data
covering both patient anthropometry and biometry as well as the corresponding meta-
information).

R2: Implement a common standard for such collections to ensure interoperability of data.

R3: Report clinical endpoints for specific therapies (if available and relevant) in order to develop
complementary personalised PD and QSP models (omics data need to be likewise provided to
inform the corresponding effect models).

Model validation (see also section: Cellular systems biology):

R1: Develop appropriate in vitro-in vivo extrapolations from targeted assays to aid in validating
PK/PD models (a full validations of PK/PD models requires comprehensive measurements of
drug PK as well as of the resulting therapeutic effect).

R2: Implement an agreement among relevant stakeholders on required criteria for model adequacy
for a well-defined context of use.

R3: Ensure that the standards (to be) used for model development, evaluation, reporting and
related decision making are commonly acknowledged by all the involved parties (regulators,
HTA agencies, academia, research centres, industry, regulators and patients ) and are relevant
for all the types of models that can be used?.

R4: Moreover, the requirements for adequate implementation of the two other components
(patient’s and other design characteristics) should also be standardized and discussed by the
involved stakeholders.

21 Of interest is the standard recently published by the American Society of Mechanical Engineers (ASME) on assessment of
credibility of computational modelling through Verification and Validation, applied to medical devices (V&V40) which was
proposed to be extended to other biomedical products such as drug and combined medical products (Viceconti et al. 2020). In
the current situation, a similar initiative oriented to disease description and drug development would be of great value.
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Artificial Intelligence approaches

Data-driven approaches, with Al and ML as the most prominent concepts, treat the mechanism as
unknown and aim to model a function that operates on data input to predict the outcome, regardless
of the unknown physiological processes. The mechanisms operating in the complex systems being
modelled, i.e. which factors together drive outcomes, are considered too complex to be determined
(black-box models). The quality of black-box models is assessed through the accuracy of their
predictions, tested in a variety of ways. These data-driven models can be applied in a hypothesis-naive
way, made as to which factors drive the causal mechanism. Such models perform well with large inputs
of all potentially significant data. Al/ML approaches provide an opportunity to move away from current
interpretive attempts to apply group associations and to predict responses in individual patients. Group
associations may be confused with prediction, and any group result must be interpreted in a largely
unstructured way to the treatment of an individual. Thus, classical group-based clinical studies and
Al/ML approaches represent two distinct paradigms: the first based on patient groups, while the second,
Al/ML approach, builds a prediction based on the individual patient.

ML attempts ever more accurate clustering or classification, to a high level of accuracy, and a high level
of confidence. Different types of ML are employed as appropriate according to input data and aim of
analysis, i.e. according to the clinical question. Examples of state-of-the-art in silico risk models of
relevance for personalised medicine, using varying input data with different results are given below. As
input data and research questions are ever-expanding, these can only be examples and not a
comprehensive list.

> Population-wide analyses of longitudinal disease trajectories identifying disease associations, comorbidities
and dispositions on the basis of clinical or registry data to identify associations driving mechanistic
hypotheses in future studies.

> PRSto assess both relative and absolute risks of diseases, and exploration of polygenic risk scores’
association with phenotype or exposome.

> Estimating heritability and genetic correlations from large health data sets in the absence of genetic data.

> Pathway enrichment analysis using data fusion techniques for data interpretation and hypothesis
generation, as well as discovery of enriched pathways across multiple data sets (clinical and genetic) to
highlight associated genes. Integrative methods can be used to identify genes, mutations and prognostic
molecular pathways in disease.

> Co-occurrence analysis of symptoms and diseases using terms of text-mining from clinical notes.

> Sub-grouping of conflicting associations for better understanding of phenotype and exposure data, such as
dietary patterns and changes of anthropomorphic traits, using combined stratification and association
discovery approaches. Conflicting rules of association adds complexity when finding genetic associations

> Identification of immune drivers through distribution profiling of the adaptive immune system.

> Assessment of metabolite association with comorbidities through linear and logistic regression, self-
organizing maps and trajectory clustering.

> Neural network-based prediction of signal peptides from amino acid sequencing, optimized to handle
incorrectly annotated input data; these results can contribute to disease understanding, to precision
medicine and to drug development or repurposing.

> Prediction of receptor specificity for all members of a given protein family for better understanding of
biological systems, including the immune system, harnessing deep artificial neural networks to integrate
information from individual receptors into a single pan-receptor model.

ML approaches learn the theory automatically from the data through a process of inference, model
fitting, or learning from examples (Baldi and Brunak 2001). ML can be supervised, unsupervised, or
partially supervised. Unsupervised learning has the potential to take all features into account and
identify clusters for precision medicine. Unsupervised learning also comprises dimensionality reduction,
permitting feature elicitation, compression and Big Data visualization, all of which can allow for better
understanding of big medical data and the factors driving disease initiation and progression. For general
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understanding of the relationships between disease and cofactor, unsupervised learning offers the
ability to discover new knowledge. More importantly, for the individual patient, unsupervised learning
can uncover previously unrecognized phenotypes which can then be used to refine outcome prediction.
In supervised learning, the model is supplied with (labelled) input features that are considered when
predicting a predetermined outcome from new data, either through regression (for continuous results
such as number of days or months before disease debut) or classification (for discrete results such
survival/death, or for image classification). Semi-supervised learning employs both labelled and
unlabelled data for training. Accuracy of ML results is verified using independent test sets. ML of the
reinforcement type allows the algorithm to react to an environment, and is related to the concept of Al,
permitting real-time decisions and individualized predictions. Supervised Al clinical decision support
tools allow Al the possibility to tailor prediction to the individual patient to the extent that bias imparted
by data summary. In this regard, Al predictions incorporating full data sets of disease comorbidities
provide better prediction of patient outcome than those relying on bundled or synthesized comorbidity
indices (Westergaard et al. 2019; Nielsen et al. 2019). A fundamental part of incorporating supervised
Al/ML into patient care will be the creation of a consensus among clinicians and data scientists on how
data inputs should be structured. The danger is that clinically accepted associations, especially those
obtained through studies from patient groups will be incorporated into the Al models. This
predetermined data organization can bias and limit the Al model.

Challenges

Input Data (see also recommendations for data integration):

Imprecise reporting: A significant challenge is confused reporting, which makes it difficult to harvest the full
benefit of results, navigate biomedical literature and generate clinically actionable findings (Varga et al. 2020, in
review) A study evaluating adherence to the TRIPOD Statement, a collection of guidelines for communicating
results from multivariate prediction models (Collins et al. 2015), reported that only 2% of all examined articles
had satisfactory reporting in their abstracts, and only 5% had satisfactory reporting in their titles (Heus et al.
2018).

Non-harmonized data: Data standardization is a major challenge, as most in silico methods require comparable
input data. Moreover, validation of the models requires analysis of an independent test set, e.g., comparable data
from a hospital in a separate geographical area, which also requires that secondary data (i.e. data produced for
another purpose than the research at hand) be harmonized and used as comparable input data.

Some European countries provide insights into how the challenge of standardization of health data can be met,
and their lead can be followed and improved upon. In the Nordic countries, population-based biorepositories and
data from 8-10 million individuals are currently available for research. These countries have a long history of
integrated healthcare and patient registries and biobanks (Njolstad et al. 2019) and have implemented systems
facilitating data access and promoting re-use of data (e.g., Findata.fi??, operating under the Ministry of Health,
which aims to be a “one-stop shop for the secondary use of health and social data.”

Inappropriately pre-processed data: Data based on group associations, or pre-determined understanding of
clinical relationships, may bias and limit Al/ML predictions. In the ideal system, data inputs are provided to the ML
model free from linkages. Certainly, associations resulting from grouped data should not be prioritized for input,
since they often prove to be poorly predictive. In addition, group trial data assumes that the individual patient for
whom the Al model is intended, shares the important attributes of the group previously studied.

Data lockdown: Proprietary systems are still a challenge for personalised medicine. In silico models for risk
prediction have the ability to harness diverse data sources, which may or may not have significance for disease
risk. At the same time, health care IT cannot integrate all modalities into one system; hence, it is necessary to
have multiple systems which can fulfil the needs of subspecialties and be designed or acquired flexibly and
rapidly. Sub-specialized imaging systems are an example, but something as common as electrocardiogram
technology is another. These subsystems, often integrated software and hardware solutions, produce frequent
challenges of data extraction, labelling, interpretation and standardization. The commitment to reasonable data
extraction possibilities and service should be a component of any sale of health care technology within EU
countries.

22 https://www.findata.fi/
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Legal issues: As discussed elsewhere it is imperative to find lawful routes for sharing data. As mentioned above, a
full discussion of these issues is found in the EUSTANDS4PM paper “Legal and Ethical Review of in silico
modelling” (O Cathaoir K. 2020).

Model Validation:

Testing: Model validation of Al/ML models is part of the development process. Often it is referred to as testing,
while the algorithmic creation is called training. With model testing, one determines how well the used method
performs for the given data set. Normally one would consider different ML methods and compare them by their
test results. For internal validations, the model is tested against its underlying data. The most common techniques
are distinguished by the division of the data set into train and test sets. In the most basic form, the complete data
set is used to train and to test the model (Apparent Validation). This naturally leads to an optimistic impression of
the model performance i.e. over-fitting; if not, this could indicate a faulty model training, e.g., a non-fitting
algorithm. Other approaches aim to reduce the bias by randomly splitting the data set into training and test sets.
The algorithm should be robust enough to produce a predictive model even if it is trained with a subset of the data.
A split into 50% - 67% training data and 50% — 33% test set, respectively, is referred to as Split-Validation. A more
reliable approach is Cross-Validation. Where the data set is split into N random groups for an N-fold validation. N-
1 of the N subsets are used to train the model while the leftover set functions as the test data. This is repeated N
times, so that each group is the test set once (N-fold cross-validation). To improve the stability of the result, this
process can be repeated k-times, whereby different groups are formed in each process (k x N-fold cross-validation).
Bootstrap validation provides an alternative approach; instead of taking a distinct subset from the sample S, a same
size group S’ is formed by selecting random data points with repetition. Theoretically, but unlikely, the bootstrap
group could be exactly the same as the sample or could contain only one data point several times. S’ functions as
the training set while S - S’ is the test set. The process can be repeated several times to improve the stability of
results. When handling incomplete data sets, one can consider to estimate the missing values either in the original
data set or in the random subsets. While the latter approach is expected to give a better impression of the method,
it is also computationally harder. With those validation measures, one decides for the best method to build a model
from the original data set. The best method is not necessarily the one that fits the training data perfectly i.e. over-
fitting, but rather the one that can predict the outcomes of an unknown data set (i.e. test set) the most accurately.
The developed models can also be validated by dividing the data manually instead of selecting a subset randomly
from the original data set. This could be done by dividing the data set into newer and older cases before the
model development. This is considered a temporal validation. Another option could be a geographical validation,
in which the model is tested for other cohorts or hospitals. Even though this could be interpreted as non-random
cross- or split-validation, it is a crucial step in ML model validation. The differences in how or when hospitals
retrieve the patient data can have a high impact on the model prediction.

Recommendations

Data integration: See also common recommendations for data integration in section “Data and model
integration”

For clinical decision support using Al, input data should be as comprehensive and unbiased as feasible.
While there is a temptation to prioritize data that have been shown to be associated with an outcome
from group analysis, such a prioritization biases the model and may amplify the error that associations
are predictive of outcome. Similarly, ranking significant findings from group trials as more important to
the Al model than other data amplifies the incorrect assumption that the individual patient can be fairly
represented by an average patient of a group trial. Finally, the application of usual clinical wisdom in an
attempt to pre-process information for the Al model may also result ignoring important data sets. In this
regard, the application of older comorbidity indices (e.g., Elixhauser and Charlson) rather than offering
the Al model access to the comorbidities provided in data sets such as the Past Medical History of the
clinical record, or population disease registries, significantly limits the predictive power of the model
(Nielsen et al. 2019; Moseley and Brunak 2019). A more rational process to align Al input may be to
develop an EU-wide list of what data sets are accessible and fulfil basic criteria, across the Union. In this
way, comparisons can be made in the least processed fashion and avoiding as much interference with
the Al inputs as possible.
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R1: Data should be as comprehensive and unbiased as feasible, rather than using selected data
based on potentially flawed existing knowledge
R2: Data should be available in both, processed and unprocessed form.

Model validation:

R1: Model validation should involve a 3-phase process.

R2: In the first phase, outcome prediction for the Al model should be compared to standard
measures that employ best clinical practice and using established evidence-based hierarchy
which takes into account historical practice, clinical trials and systematic review/meta-analyses
(Murad et al. 2016).

R3: If the Al model shows a predictive advantage, a second phase of validation could involve use of a
High Confidence Off Policy Evaluation as previously described (Komorowski et al. 2018) where
the Al model is compared to clinician decision making.

R4: If beneficial, phase 3 provides clinicians access to Al prediction points.
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Annex

Common standards relevant for personalised medicine

Table 1: Common standards relevant for personalised medicine and in silico approaches.

Examples of common standards that have been developed by specific user communities and different
stakeholders. Their use has been enhanced as they have been coupled to tools which have spread in the
respective field of research. In addition, a current overview about data formats and standards for in-silico
systems biology and quantitative modelling can be found in (Golebiewski 2019) and as a comprehensive
reference in the annex of ISO 20691 (in preparation).

DNA, RNA, protein sequence formats

FASTA

Widely used for representing nucleotide sequences or amino acid, developed
for use in the FASTA program (Lipman and Pearson 1985; Pearson and
Lipman 1988). The FASTA format is simple and lacks facility for extensive
annotation.

Sequence Alignment/Map
(SAM) and Binary Analysis
Map (BAM) format

Capture of sequences that have been aligned to a reference genome. SAM is
a tab delimited text format consisting of a header section, which is optional,
and an alignment section. BAM is in a binary more condensed version while
SAM has the same information in a series of tab delimited ASCII columns (Li
et al. 2009). BAM files are compressed files.

CRAM

A compressed columnar file format also used for storing biological sequences
mapped to a reference sequence, it has been developed to improve
compression and hence save on storage costs (Hsi-Yang Fritz et al. 2011).

ISO/IEC 23092 (MPEG-G):
Information technology —
Genomic information
representation

The ISO/IEC 23092 (MPEG-G) series of standards is a coordinated
international effort to specify a compressed data format that enables large
scale genomic data processing, transport and sharing. Interoperability and
integration with existing genomic information processing pipelines is enabled
by supporting conversion from/to the FASTQ/SAM/BAM file formats.

It consists of currently (as of October 2020) six parts:

Part 1: Transport and storage of genomic information

Part 2: Coding of genomic information

Part 3: Metadata and application programming interfaces (APls)

Part 4: Reference software

Part 5: Conformance

Part 6: Coding of genomic annotations

General feature format
(GFF)

Stores DNA, RNA or protein genetic sequence data (Akanksha Limaye 2019).
It stores the whole sequence for the relevant feature.

Variant call format (VCF)

A text format file storing the same data but only contains the sites which
differ from a given reference and hence is more space efficient than GFF
(GitHub_Community 2020). Originally designed to be used for SNPs and
INDELs but can also be used for structural variation.

A Variant represents a change in DNA sequence relative to some reference.
For example, a variant could represent a Single Nucleotide Polymorphism
(SNP) or an insertion. Variants belong to a VariantSet. This is equivalent to a
row in VCF.
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Binary variant call format
(BCF)

A binary version of VCF and therefore is more space efficient, the
relationship between BCF and VCF being similar to that between BAM and
SAM.

Synthetic Biology Open
Language (SBOL)

An RDF/XML format for representing, among other things, sequences for
genetic circuit designs. It has a rich ability to express both sequence feature
annotations and part/sub-part relationships. It is also designed to represent
incomplete/partial sequences and relative ordering of parts in a genetic
design.

Mass Spectrometry

Stores the spectra and chromatograms from mass spectrometry in and
eXtensible Markup Language (XML) format. Now a well-tested open-source

mzML . -
format for mass spectrometer output files that is widely used (Martens et al.
2011).
A more easily accessible format which could be used with R or Microsoft
Excel tools in the field of proteomics and metabolomics. mzTab files can
mzTab contain protein, peptide and small molecule identifications. In addition

experimental meta-data and basic quantitative information (Griss et al.
2014).

Medical imaging, Digital Imaging and Communications in Medicine

Digital Imaging and
Communications in
Medicine (DICOM)

Dominating standard used in medical radiology for handling, storage, printing
and exchanges of images and related information. Specifies the file format
and communication protocol for handling these files. Captures pixel data
making up the image and how the image was generated (e.g., used machine
and protocol, information regarding what patient the image is capturing.
Living standard regularly maintained and modified (DICOM_Secretariat
2020), also adopted as ISO 12052 "Health informatics - Digital imaging and
communication in medicine (DICOM) including workflow and data
management".

The European Data Format
(EDF)

A standard to archive, share and analyse data from medical time series
(Kemp et al. 1992).

Semantic integrations

BRIDG (Biomedical Research

Integrated Domain Group
Model)

An information model being used to support development of data
interchange standards and technology solutions to enable semantic
(meaning-based) interoperability within the biomedical/clinical research
arena and between research and the healthcare arena. BRIDG is a
collaborative effort engaging stakeholders from the Clinical Data Interchange
Standards Consortium (CDISC), the HL7 BRIDG Work Group, the International
Organization for Standardization (ISO), the US National Cancer Institute (NCl),
and the US Food and Drug Administration (FDA). The goal of the BRIDG
Model is to produce a shared view of the dynamic and static semantics for
the domain of basic, pre-clinical, clinical, and translational research and its
associated regulatory artifacts. The BRIDG Model is a hybrid of conceptual
and logical models represented as UML Class Diagrams. It was built by
harmonizing other project and domain models and each concept in the
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BRIDG model carries its provenance in the form of mapping tags indicating
what data elements from other models map to that concept.

HL7 FHIR (Fast Healthcare
Interoperability Resources)

A standard for exchanging healthcare information electronically.

Human Phenome Ontology
(HPO)

Developed by the Monarch Initiative a consortium, carrying out semantic
integration of genes, variants, genotypes, phenotypes and diseases in a
variety of species allowing powerful searches based on ontology. HPO is a
standardized vocabulary of phenotypic abnormalities associated with
disease. Standard terminology for clinical “deep phenotyping” in humans,
providing detailed descriptions of clinical abnormalities and computable
disease definitions (Shefchek et al. 2020). The primary labels use medical
terminology used by clinicians and researchers. These are complemented
with laypersons synonyms. HPO is one of the projects in the Global Alliance
for Genomics and Health (GA4GH) seeking to enable responsible genomic
data sharing within a human rights framework (GA4GH_Community 2020).

SNOMED CT

The Systematized Nomenclature of Medicine (SNOMED) is a family of
medical terminology systems. Originally conceived as a nomenclature, the
latest version SNOMED CT can best be characterised as an ontology-based
terminology standard. The goal of all SNOMED versions is to provide a
language that represents clinical content as clearly and precisely as possible,
regardless of its original language. This should enable search queries to be
answered with high recall and high precision (see also www.snomed.org).

LOINC

The Logical Observation Identifiers Names and Codes (LOINC) is a database of
common names and identifiers used to identify laboratory and clinical
examination and test results. The aim is to facilitate the electronic exchange
of data when transmitting medical examination results and findings data.
LOINC is recommended (also by HL7 and DICOM) for the exchange of
structured documents (CDA) and messages (see also https://loinc.org/).

Serial ISO/IEEE 11073

Personal Health Data (PHD) Standards, a group of standards addressing the
interoperability of personal health devices (PHDs) such as weighing scales,
blood pressure monitors, blood glucose monitors, etc. (see also:
http://11073.0rg/).

Models and modelling tools

CellML

A standard based on XML markup language (Lloyd, Halstead, and Nielsen 2004)
used for storing and exchanging computer-based mathematical models
allowing sharing of models even when different modelling tools are used
(Schreiber et al. 2016). CellML is a description language to define models of
cellular and subcellular processes and supports component-based modelling,
allowing models to import other models, or subparts of models, therefore
strongly encouraging their reuse and facilitating a modularized modelling
approach. A CellML model typically consists of components, which may contain
variables and mathematics that describe the behaviour of that component.
The mathematical model is considered to be the primary data and biological
context is provided by annotating the variables and equations with metadata
using the Resource Description Format (RDF).

The Systems Biology
Markup Language (SBML)

A standard model interchange languages that permits exchange of models
between different software tools (Hucka et al. 2018). SBML is a machine-

33



EU-STANDS4PM — White Paper: Towards in silico approaches for personalised medicine

readable, XML (Extensible Markup Language) based model description and
exchange format for computational models of biological processes. Its strength
is in representing phenomena at the scale of biochemical processes, but it is
not limited to that. The evolution of SBML proceeds in stages (levels). Since
SBML Level 3 the format is modular, with the core usable in its own right and
packages being additional “layers” that add features to the core. SBML core is
suited to representing such things as classical metabolic models and cell
signaling models. SBML packages that extend the core and are optional in
their use, add additional model features, such as visualizations, distributions,
constraint-based models (flux balance constraints), hierarchical model
composition, special processes or grouping of elements.

The Synthetic Biology
Open Language (SBOL)

A standard to support specifications and exchange of biological design
information (Madsen et al. 2019). SBOL Data provides both an electronic
format for representing this information, while SBOL Visual provides schematic
glyphs to graphically depict genetic designs.

Simulation Experiment
Description Markup
Language (SED-ML)

A machine-readable, XML (Extensible Markup Language) based format for
encoding the description of a computational simulation. Developed to capture
the Minimum Information about a simulation experiment (MIASE), the minimal
set of information needed to allow reproduction of simulation experiments
(Waltemath et al. 2011; Schreiber et al. 2019). Typically used with an XML-
based model description format (e.g. CellML or SBML), SED-ML allows for the
description of applying a numerical algorithm to a mathematical model in
order to perform a given task. Tasks may be nested to allow the composition of
relatively simple tasks into increasingly complex simulations. Mechanisms
exist in SED-ML to apply pre-processing steps to a model prior to executing a
simulation task and also to apply post-processing to the raw simulation results
(Nickerson et al. 2016).

Open Modelling EXchange
format (OMEX)

OMEX supports the exchange of all the information necessary for a modelling
and simulation experiment in the life sciences. An OMEX file is a ZIP container
that includes a manifest file, an optional metadata file, and the files describing
the model. The manifest is an XML (Extensible Markup Language) file listing all
files included in the archive and their type. The metadata file provides
additional information about the archive and its content. Although any format
can be used, an XML serialization of the Resource Description Framework
(RDF) is recommended (Bergmann et al. 2014).

NeuroML

XML-based standardized model description language to describe mathematical
models of neurons and complex neuronal networks (Goddard et al. 2001). The
focus of NeuroML is on models which are based on the biophysical and
anatomical properties of real neurons.

PBPK/PD

Physiologically based Pharmacokinetic/Pharmacodynamic models allow a
mechanistic representation of drugs in biological systems (Kuepfer et al. 2016).

Pharmacometrics Markup
Language (PharmML)

A machine-readable, XML (Extensible Markup Language) based model
description and exchange format used for encoding computational models,
associated tasks and their annotation as used in pharmacometrics. It provides
the means to encode pharmacokinetic and pharmacodynamic (PK/PD) models,
as well as clinical trial designs and modelling steps (Nickerson et al. 2016).

Human Physiome Field
Markup Language
(FieldML)

A machine-readable, XML (Extensible Markup Language) based model
description and exchange format for representing hierarchical models using
generalized mathematical fields. FieldML can be used to represent the dynamic
3D geometry and solution fields from computational models of cells, tissues
and organs (Nickerson et al. 2016).

Biological Pathways
Exchange (BioPAX)

A machine-readable standard format that aims to enable integration,
exchange, visualization and analysis of biological pathway data.
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Numerical Markup
Language (NuML)

A machine-readable, XML (Extensible Markup Language) based format for
describing and exchanging multidimensional arrays of numbers to be used with
model and simulation descriptions.

Analysis pipelines

Genomic Sequence Variation Markup Language (GSVML). The standard is
applicable to the data exchange format that is designed to facilitate the

ISO 25720 . . .
exchange of the genomic sequence variation data around the world, without
forcing change of any database schema, based on XML.
Data elements and their metadata for describing structured clinical genomic
sequence information in electronic health records. The specification defines
the data elements and their necessary metadata to implement a structured
ISO/TS 20428 ' y 'mP uctu

clinical genomic sequencing report and their metadata in electronic health
records particularly focusing on the genomic data generated by next
generation sequencing technology.

ISO/DIS 21393 (in
preparation)

Omics Markup Language (OML). OML is a data exchange format designed to
facilitate exchanging omics data around the world without forcing changes to
existing databases.

ISO/DTR 21394 (in
preparation)

Health informatics — Whole Genome Sequence Markup Language (WGML)
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Recommendations to key actors

Info box 5: General recommendations to different key actors from the EU-STANDS4PM paper “Towards
standardization guidelines for in silico approaches in personalized medicine” (Brunak et al. 2020)

Funders, including the EU-Commission: Key requirements of any grant funding for personalized medicine projects
should be that: (i) Grant recipients make algorithms and pre-processed project data available to the community and
(ii) algorithms are accompanied by documentation and follow approved standards. Standardization efforts shall also
be fully fundable to ensure that appropriate and sufficient resources are made available to the scientific communities
for developing standards that the researchers then could apply consistently to their workflows. This ensures
establishment of standards that reflect best practice in their domain. Data processing, documentation, and
subsequent sharing thereby become integral, obligatory deliverables of funded projects, included in the budget and
planning. Data sharing and documentation thereby become less onerous than currently, where they are un-funded
and altruistic.

Health care providers purchasing and developing electronic health care systems: State organizations purchasing health
care systems should make data harvesting a criterion for system developers and providers. Many providers regard
both the data produced and the algorithms involved as proprietary and create closed systems where analysis of data
proceeds internally with key limitations in how data analysis can be performed. This is for example the case with some
providers of Electronic Patient Record systems, where the business model seems to work against open systems.
Instead we suggest that tools should be shared even across countries, health care providers, and with academic or
industrial stakeholders involved in health data science. The negotiation power necessary to enforce harvestability of
these data might arise only as a consequence of legislation making it compulsory.

Journals: A requirement of publication should be processed data deposition in recommended, preferably open data
repositories. Where the nature of the data is such that deposition is not legal/ethical, a description of the data should
be catalogued in such a repository. Restricted access models will also in many cases be needed and desirable.

Research groups: Documentation and data sharing tasks should be included in the preparation of grant applications
for projects in the form of a data management plan. Once the project is initiated, documentation should be prioritized
when pre-processing data to make it possible for others to re-use processed data. Algorithms should follow available
standards unless there are clear reasons why not to use such existing standards. The advantage of being cited for re-
use of pre-processed data and algorithms should be a focus point. Transparency and compliance with standards for
algorithms and data should be a key quality parameter when assessing both one’s own work, and work received for
peer review.

National and regional health data providers: Options for sharing of pre-processed data originally provided by these
actors should be facilitated. For example, the Health Data Authorities could provide a repository for pre-processed
data and scripts, stipulating that the researchers having done the pre-processing must be credited in work building
upon it. Too often, users are handed poorly annotated data requiring cleaning in the same way leading to substantial
duplication of effort. Guidelines for returning clean and value-added data to data providers should be encouraged.

Policy makers: To ensure best adaptation and acceptance of mandatory standards, regulatory and governance bodies,
as well as other policy makers releasing and monitoring such standards should work closely with the scientific
communities when establishing official standards. The need for greater clarity regarding the scope of legal standards
related to personalized medicine is clear. Treaties and recommendations should be reconsidered in light of big data
driven healthcare. Yet, even newer legislation, namely the GDPR, is open to interpretation and national deviation,
which can leave researchers and individuals unclear regarding processing of personal data. This should be addressed
through legal guidance from, for example, the European Court of Justice. Furthermore, there is a need for greater
transparency within the healthcare system regarding use of data for research, including informed opportunities to opt
out of secondary use and information on data ownership. Governments should ensure that individuals are adequately
protected from misuse of their data, including through proportionate fines. Although scientific research is vital, the
individual’s rights continue to weigh higher in international bio law.
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Case Study Collection

Project

BD2Decide: Big Data and Models for Personalized Head and Neck Cancer
Decision Support (http://www.bd2decide.eu/)

Methods

a)
b)
<)
d)

e)
f)
g)

RNA: STAR/DeSEQ2
DNA methylome: Bismark/RnBeads
Microbiome: Mothur/Qiime/Humman2/Metaphlan

Marker identification and reduction to diagnostic sets are done by
different ML approaches ( random forest , Bayesian inference)"

Machine learning (unsupervised)
Omics data analysis

Omics data analysis

Model function

a)

Combined methods making survival prediction based on clinical factors
in HNC process

Input data

a)
b)

d)
e)
f)

Clinical and pathological

Clinical and pathological

Clinical, pathological, genomics (transcriptomics) and radiomics
Clinical, pathological, genomics (transcriptomics) and radiomics
Tissue samples

Imaging data

Output

a)

b)

<)

d)

f)

Survival prediction

Purpose: To assess the impact, in terms of survival, of each clinical
factor involved in the HNC process.

Patient/cohort classification.

Purpose: To identify relations among different variables that apparently
are not related.

Patient/cohort classification

Purpose: To identify variables that are correlated to a certain group of
population (new patterns).

Patient/cohort classification

Purpose: To uncover significant indicators associated to patient
cohorts.

Transcriptomic profiling

Purpose: To deal with high amount of genes and discover relations
between genes and patient cohorts.

Radiomics profiling

Purpose: To deal with high amount of radiomic features and discover
relations between radiomics and patient cohorts.

Processing steps

b)
c)
d)

e)
f)

Univariate (Log-rank test), Multivariate Cox Model, Survival trees
Logistic regression, Support Vector Machine, Random Forest
K-means, Birch, Ward, Spectral Cluster

Principal Component Analysis, Independent Component Analysis, Non-
negative Matrix Factorization

RNAseq (next-generation sequencing)

Radiomic feature extraction
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Use cases

a-f) Patients affected by TNM stage IlI-IV head and neck cancers

Scale (tissue, organ, cell etc.)

a)
b)
c)
d)
e)
f)

All
All
All
All
Sub-cellular & Tissue scale

Tissue scale & Organ scale

Challenges/Benefits/Limitations,
Input Data standardisation

a)

b)

In order to avoid issues on data standardization, due to data comes
from different hospitals, well-defined protocols and data cleaning
processes have been adopted, inspired also in previous works.

Laboratory problem were solved centralizing genomic tumour tissue
samples analyses in only one clinical centre.

Technical approaches has been applied to solve the problem of sharing
data in various centres and to compare the data with other projects
(like RARECARENet). Dedicated and private services, and integrated
approaches has been applied.

IT restrictions in each hospital to share and collect the data were
addressed to allow the usage of secure services in each centre.

Ethical and data protection regulation has been followed-up to allow
the correct use of the data management during the project execution.

Existing standards (formats,
guidelines, ontologies)

a)

b)

d)

BD2Decide ontology (mapped with external ontologies such as
SNOMED-CT or ICD10). Also mapped with Gene ontology.

Ontology was based on previous project (NEOMARK).
Within the Decision Support System, as part as the Knowledge

Management System, a set of rules has been defined to be used in
future projects as guidelines.

Ethical issues force to create informed consent to obtain the
authorization by Ethical committee in each centre, complying each legal
standard.

Model validation

no information available

Lessons and Comments

no information available
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Computational Horizons In Cancer (CHIC): Developing Meta- and Hyper-

Project Multiscale Models and Repositories for In Silico Oncology (http://chic-
vph.eu/project/)
Methods no information available

Model function

-Adapting a Four Dimensional Nephroblastoma Treatment Model to a
Clinical Trial Case Based on Multi-Method Sensitivity Analysis (Georgiadi et
al. 2012)

-The Technologically Integrated Oncosimulator: Combining Multiscale
Cancer Modelling with Information Technology in the In Silico Oncology
Context (Stamatakos et al. 2014).

Input data

Tomographic imaging data, clinical data, molecular data, pathology data

Output

Response to neoadjuvant treatment

Processing steps

Imaging data postprocessing, molecular data postprocessing, pathology
data postprocessing

Use cases

Nephroblastoma

Scale (tissue, organ, cell etc.)

Multiscale heterogeneous data (clinical, imaging, molecular, pathology)

Challenges/Benefits/Limitations,
Input Data standardisation

Poor standardization of DICOM data from different MRIs using different
protocols, postprocessing of imaging data is needed to render the tumour,
no automatic tools are available, combining different hypomodels to one
hypermodel.

Existing standards (formats,
guidelines, ontologies)

no information available

Model validation

Will be done by comparing the predictions with reality (imaging data after
neoadjuvant chemotherapy and pathology data after surgery)

Lessons and Comments

This is done in close collaboration with Prof. Dr. Stamatakos and his group
from ICCS, National Technical University of Athens, Greece. This shows that
multidisciplinary approaches and team work are needed, including a legal
and ethical framework. Sustainability is of importance after funding
periods. The Medical Device Regulation needs to be taken into
consideration if the model is to be used in clinical care.
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Project

iPlacenta: Integrative placenta: A systems biology approach towards
phenotype-specific interactomes for placental function
(https://www.iplacenta.eu/)

Methods

a) Molecular interaction map construction and analysis; supervised ML
b) In vitro cell work: expression of specific proteins/modified proteins in
cells, differentiation of pluripotent stem cells into trophoblasts

c) Use of small animal model for assessment of vasculature and
endothelial function with the newly developed devices

d) Doppler ultrasound in pregnancy women and collection of blood
sample after the delivery.

e) Molecular laboratory techniques, data analysis, bioinformatics

f) Expression-Quantitative Trait Loci analysis by combining genotype and
gene expression datasets from two cohorts of human placental
samples.

g) Recruitment patients and performing non-invasive CV assessment;
supervised BT and AK

Model function

a) ldentification of regulatory motifs; risk prediction

b) Uncover mechanistic roles of redox modifications in angiogenic
signalling and assess their functional effects in early pregnancy events

c) Literature, in vivo data animals, knowledge industrial partner
d) ldentification of a epigenetic marker in maternal blood

e) identification of senescence markers and disease progress

f) Identification of eQTLs, of regulatory hot-spots

g) Identification of abnormal CV findings; risk prediction

Input data a) Primary Literature, public databases; clinical data (hospitalomics)
b) Gene and protein expression, functional assays, proteomics, splicing
micro-array
c) Prototypes, in vivo validated
d) Primary Literature, clinical data (from patients)
e) Clinical and experimental data
f) Genotype data (Acquired with InfiniumOmniexpress Illumina Array,
from DNA samples) and gene expression data (Acquired with ClariomD
microarray from Affymetrix, from RNA samples)
g) Clinical data, biophysical and biochemical data
Output a) Therapeutic drug target, biomarker, improved micro-arrays,

knowledgebase; patient stratification & classification
b) New insights on signaling pathways and cell functions
c) Prototype development process

d) Possibility of predicting postnatal neurological damage when the fetus
is in utero.

e) Understanding pathophysiology of adverse pregnacies affected by
placental ageing. Biomarker identification and Senolytic therapeutics

f) list of gene-snps that show statistically significant correlation and could
indicate potential regulatory mechanisms in the placenta

g) Patient stratification & classification; prediction; improving CV health in
women

Processing steps

a) Various approaches
b) —

c) Endothelial function of rodents, placenta vasculature in murine
pregnancy
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d) Doppler ultrasound/Collection of blood samples -
Analysis of samples/Analysis of results

e) Various approaches

f) Filtering and quality control of genotype and gene expression data

g) Various approaches

Use cases a) Pregnancy complications, here: preeclampsia intrauterine growth
restriction

b) Pathologies involving oxidative stress and angiogenesis, here
preeclampsia

c) Organ

d) Pregnancy complications: late onset intrauterine growth restriction

e) Pregnancy complications, here: preeclampsia intrauterine growth
restriction

f) Placental function pregnancy complications, here: preeclampsia
intrauterine growth restriction

g) Hypertensive disorders of pregnancy

Scale (tissue, organ, cell etc.) a) Multiscale from placenta at the highest level to molecule on the lowest
level;

b) Molecules (single protein functions), cell (gene expression and
functional effects, potentially interaction between several cell types in
co-cultures)

¢) Animal study under home office license
Comparison with other developments (similar technique)

d) Multiscale (blood sample, extraction of micro-RNA)

e) Multiscale from placenta at the highest level to molecule on the lowest
level;

f) Using DNA and RNA from the whole placenta (organ)

g) Assessment of CV system and maternal heart

ChaIIenges/Benefits{Limitations, a) Dependency on results of partner projects results; Ultrasound image
Input Data standardisation anonymization; hospital database access (law restrictions)

b) Challenges/limitations: translation from molecular to tissue/organ
scale, lack of physiological relevance for immortalised cell lines,
questions towards precise identity of iPSC-derived trophoblasts;
Benefits: precise focus on specific molecular pathways, easy access to
and maintenance of cells

c) -

d) Limitations: -Recruitment of patients and blood samples, follow-up of
patients. -Benefits: possibility of predicting postnatal neurological
damage when the fetus is in utero.

-anonymization of the clinical data

e) Sample collection and sample size; limited access to hospital data

f) Main limitations are due to the small number of samples available.

g) Recruitment and follow patients up/offering extra-care for
patients/observational study

Existing standards (formats, a) SBGN PD & AF (CellDesigner mix), GO, ChEBI, UniProt
guidelines, ontologies) b) Published literature

c) -

d) ---

e) SBGN PD & AF (CellDesigner mix), GO, ChEBI, UniProt
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f)

g)

Study design based on previous studies found in the literature,
integrating different approaches to better tackle our own dataset

Not applicable

Model validation

a)
b)

Experimental validation, expert curation/validation

Experimental in vitro validation with complementary studies, animal
studies

Experimental validation
Experimental validation, expert curation/validation

Overlap of findings with previous eQTL analyses in placenta,
experimental validation

External validation

Lessons and Comments

b)

d)

e)

f)
g)

iPlacenta is an interdisciplinary project/training network that
investigates pregnancy complications from with various approaches.
Thus, the methods, data, standards and validation depend heavily on
the sub project. Here we only list the information for

iPlacenta is an interdisciplinary project/training network that
investigates pregnancy complications from with various approaches.
Thus, the methods, data, standards and validation depend heavily on
the sub project.

iPlacenta is an interdisciplinary project/training network that
investigates pregnancy complications from with various approaches.
Thus, the methods, data, standards and validation depend heavily on
the sub project.

iPlacenta is a great network among ESRs and among research teams all
around Europe. | am very happy to be part of this.
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Project

LifeCycle: EU child cohort network (https://lifecycle-project.eu/)

Methods

Regression analyses; Omic studies

Model function

no information available

Data collected in ongoing population-based cohorts studies in pregnancy

Input data and childhood (questionnaire, physical examinations, biomarkers, imaging,
omics)
Output Harmonized data for core exposure, covariate and outcome variables

Processing steps

Different approaches

Use cases

no information available

Scale (tissue, organ, cell etc.)

Mostly blood biomarkers and omics

Challenges/Benefits/Limitations,
Input Data standardisation

Harmonisation steps to align 20 cohorts with over 300,000 participants is a
challenge; lack of governance structure for data sharing through an
federated data analysis approach

Existing standards (formats,
guidelines, ontologies)

Not really available, we had to develop

Model validation

no information available

Lessons and Comments

harmonized data crucial for cross cohort collaboration; great opportunity
to capitalize on existing data; GDPR complicates international collaboration
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Multiple MS: Multiple manifestations of genetic and non-genetic factors

Project in Multiple Sclerosis disentangled with a multi-omics approach to
accelerate personalised medicine (https://www.multiplems.eu/)
Unsupervised approach: e.g. Topological mapping, multi-partite

Methods “knowledge graph”. Supervised approaches: e.g. cell-specific pathway

analysis coupled to burden score.

Model function

Stratification of patients with MS

Genetic, lifestyle (questionnaires), established biomarkers. We will have
two complementary approaches one using risk factors for MS and one

Input data using risk factors for disease severity measured in several different ways.
For smaller part of cohort expression and methylome data will also be
used.

Clusters of patients that we then will be characterized clinically (i.e. Do the

Output different clusters differ with regard to response to treatment or severity of

disease?). Clinical data is already collected.

Processing steps

Data has been collected from several previous studies. Harmonization of
data (both genetic, questionnaire and clinical).

Use cases

no information available

Scale (tissue, organ, cell etc.)

Genotyping done on blood. Biomarker analysis on blood or CSF. MRI of
brain and spinal cord.

Challenges/Benefits/Limitations,
Input Data standardisation

Harmonization of data from >30 previous studies have been challenging.
Currently genetic, clinical, biomarker and MRI data have been harmonized.
Lifestyle exposures have not been harmonized yet.

Existing standards (formats,
guidelines, ontologies)

ICD10 used for comorbidities. Standard formats used for genotype data.
Biomarker data as much as possible standardized to units used in clinical
medicine. MRI, standardized pipeline used for processing DICOM images,
this standard was developed in this project, but applied in several other
project too.

Model validation

Models that are developed using data in the retrospective arm of the
project will be validated in the prospective observational trial of newly
diagnosed MS patients which is also part of the study.

Lessons and Comments

We have learnt that harmonization of data takes longer than we expected.
We have also learnt that getting data processing agreements in place
allowing sharing of data was complicated and took a lot of effort but is not
impossible. We are only now starting the modelling part of the project.
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Project

Personalised treatment of anaemia in lung cancer patients
(https://www.dkfz.de/en/systembiologie/Areasofinterest.html)

Methods

no information available

Model function

Mathematical model (ODE) predicting outcome of treatment options based
on hemoglobin and CRP values (longitudinal measurements and cohort
data).

Input data

Lab values (Hgb, CRP)

Output

Treatment outcome predictions

Processing steps

no information available

Use cases

no information available

Scale (tissue, organ, cell etc.)

Modelling on the Epo pathway and coupling to whole body effects in
anemia

Challenges/Benefits/Limitations,
Input Data standardisation

Non-standardised input data, e.g. homemade medication name input data.
Challenges: input data variation where input data was not recognized by
the model as the same treatment under two different names. Challenges:
importance of knowing precise death time and date including which day of
the week; perceived conflict with principles of data minimization.
Challenge: does the model take into account the subjective well-being of
the patient, as an outcome?

Existing standards (formats,
guidelines, ontologies)

no information available

Model validation

Model validation: Comparison of patient outcome with or without use of
the model, e.g. survival. Design? RCT parallel populations? Difficult to test
the model in different hospital because of homemade input data
standards, but not impossible.

Lessons and Comments

no information available
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SYSCID: Systems medicine for chronic inflammatory diseases

Proi
roject (https://syscid.eu/)
Machine learning. Analytical pipelines including but not limited to standard
methods
DNA: BWA/Samtools/GATK
Methods RNA: STAR/DeSEQ2

DNA methylome: Bismark/RnBeads

Microbiome: Mothur/Qiime/Humman2/Metaphlan

Marker identification and reduction to diagnostic sets are done by
different ML approaches ( random forest , Bayesian inference)

Model function

Biomarker identification; predict disease outcome and treatment response
to guide therapy decisions on individual basis.

Tissue and blood coupled to clinical data from EHR and PRO.

Input data Exomes/genomes, transcriptomes, DNA methylomes and 16rRNA
/metagenomics (microbiome) data.
Output Several data and metadata formats one all analysed level according to

standards ( DNA/DNAm/RNA) according to IHEC guidelines.

Processing steps

Oriented towards research question, the above mentioned pipelines use
standard data processing ( e.g. Deseq2).

Use cases

Inflammatory diseases (IBD, RA and SLE)

Scale (tissue, organ, cell etc.)

Tissue, blood and single cell from peripheral leukocytes

Challenges/Benefits/Limitations,
Input Data standardisation

Versioning of community standards ( e.g. reference genomes and updates
of mappers and count software)

Existing standards (formats,
guidelines, ontologies)

Single cell field developing quickly, less standardized compared to genetic
analyses. As IHEC and HMP (Raes) Partners SYSCID is well aware of data
standards.

For response analyses, longitudinal analyses and models building on
regulatory /functional networks are necessary. Here, we feel that there is
much less standardization. This is an unmet need in the systems
immunology field.

Model validation

no information available

Lessons and Comments

Importance of standardizing outcome data that is meaningful for patients.
Increase communication between modellers and medical specialization
communities, patient organisations.
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